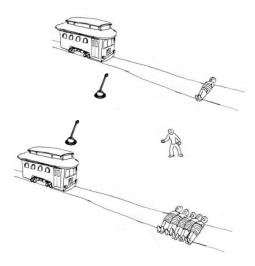
| Chaos<br>00000000000000 | Infinite worlds<br>0<br>00000<br>000000<br>00000 |  |
|-------------------------|--------------------------------------------------|--|
|                         |                                                  |  |

## Doing good in an infinite, chaotic world

#### Hayden Wilkinson

Australian National University


#### EA Global 2019

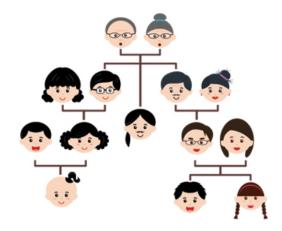
Slides available at: haydenwilkinson.co.uk/slides



Hayden Wilkinson (ANU)

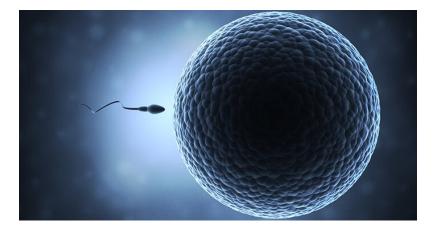
| Chaos<br>000000000000000 | Infinite worlds<br>o<br>ococo<br>ococo<br>ococo |  |
|--------------------------|-------------------------------------------------|--|
|                          |                                                 |  |




| Chaos<br>•0000000000000 | Infinite worlds<br>o<br>oocoo<br>ooocoo<br>oooco |  |
|-------------------------|--------------------------------------------------|--|
|                         |                                                  |  |
| Chaos                   |                                                  |  |

| Chaos<br>•oooooooooooooooo | Infinite worlds<br>0<br>00000<br>000000<br>00000 |  |
|----------------------------|--------------------------------------------------|--|
|                            |                                                  |  |
| Chaos                      |                                                  |  |

Identity effects


| Chaos                                   |                               | Summary |
|-----------------------------------------|-------------------------------|---------|
| 000000000000000000000000000000000000000 | 0<br>00000<br>000000<br>00000 |         |
|                                         |                               |         |

# Identity effects



| Chaos<br>oo∙oooooooooo | Infinite worlds<br>0<br>00000<br>00000<br>00000 |  |
|------------------------|-------------------------------------------------|--|
|                        |                                                 |  |

# Identity effects



| Chaos<br>00000000000000 | Infinite worlds<br>0<br>00000<br>000000<br>00000 |  |
|-------------------------|--------------------------------------------------|--|
|                         |                                                  |  |
| Chaos                   |                                                  |  |

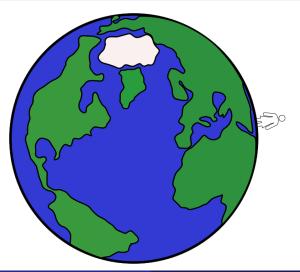
- Identity effects
- Climatic effects

| Chaos                                   |                               | Summary |
|-----------------------------------------|-------------------------------|---------|
| 000000000000000000000000000000000000000 | 0<br>00000<br>000000<br>00000 |         |

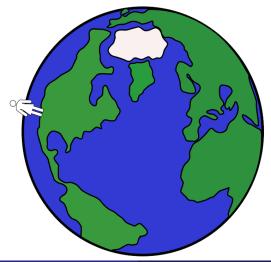
# Climatic effects



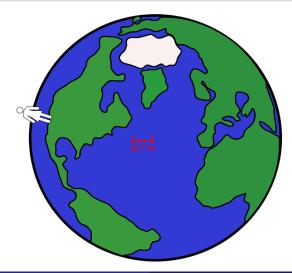
| Chaos                                   |                               | Summary |
|-----------------------------------------|-------------------------------|---------|
| 000000000000000000000000000000000000000 | 0<br>00000<br>000000<br>00000 |         |
|                                         |                               |         |


## Climatic effects

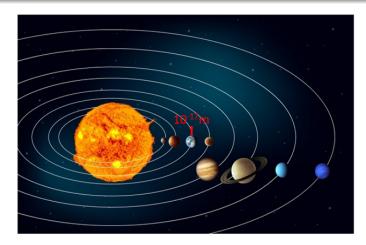



| Chaos<br>00000000000000 | Infinite worlds<br>0<br>00000<br>000000<br>00000 |  |
|-------------------------|--------------------------------------------------|--|
|                         |                                                  |  |
| Chaos                   |                                                  |  |

- Identity effects
- Climatic effects
- Gravitational effects


| Chaos         |                               | Summary |
|---------------|-------------------------------|---------|
| 0000000000000 | 0<br>00000<br>000000<br>00000 |         |



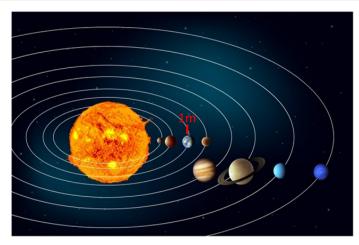

| Chaos         |                               | Summary |
|---------------|-------------------------------|---------|
| 0000000000000 | 0<br>00000<br>000000<br>00000 |         |



| Chaos           |                               | Summary |
|-----------------|-------------------------------|---------|
| 000000000000000 | 0<br>00000<br>000000<br>00000 |         |



| Chaos                                   |                               | Summary |
|-----------------------------------------|-------------------------------|---------|
| 000000000000000000000000000000000000000 | 0<br>00000<br>000000<br>00000 |         |

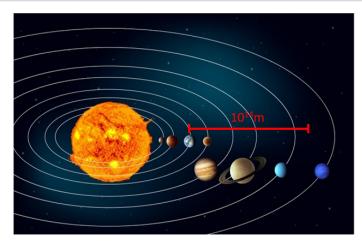



#### Present day

Hayden Wilkinson (ANU)

Doing good in an infinite, chaotic world

| Chaos                                   |                               | Summary |
|-----------------------------------------|-------------------------------|---------|
| 000000000000000000000000000000000000000 | 0<br>00000<br>000000<br>00000 |         |




#### After 170 million years

Hayden Wilkinson (ANU)

Doing good in an infinite, chaotic world

| Chaos                                   |                               | Summary |
|-----------------------------------------|-------------------------------|---------|
| 000000000000000000000000000000000000000 | 0<br>00000<br>000000<br>00000 |         |



#### After 310 million years

Hayden Wilkinson (ANU)

Doing good in an infinite, chaotic world

| Chaos<br>oooooooooooooooo | Infinite worlds<br>0<br>00000<br>000000<br>00000 |  |
|---------------------------|--------------------------------------------------|--|
|                           |                                                  |  |
| Chaos                     |                                                  |  |

- Identity effects
- Climatic effects
- Gravitational effects
- And others...

| Chaos<br>0000000000000000 | Cluelessness<br>•000000 | Infinite worlds<br>0<br>00000<br>000000<br>00000 |  |
|---------------------------|-------------------------|--------------------------------------------------|--|
|                           |                         |                                                  |  |

| Chaos<br>00000000000000000 | Cluelessness<br>•oooooo | Infinite worlds<br>0<br>00000<br>000000<br>00000 |  |
|----------------------------|-------------------------|--------------------------------------------------|--|
|                            |                         |                                                  |  |



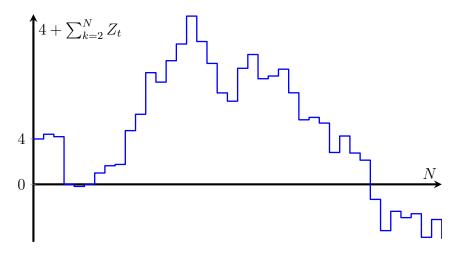
$$\begin{array}{rcl}
t_1 \\
W_1 : & 1 \\
W_2 : & 5
\end{array}$$

| Chaos | Cluelessness |                               | Summary |
|-------|--------------|-------------------------------|---------|
|       | 000000       | 0<br>00000<br>000000<br>00000 |         |
|       |              |                               |         |



#### 

| Chaos | Cluelessness |                               | Summary |
|-------|--------------|-------------------------------|---------|
|       | 000000       | 0<br>00000<br>000000<br>00000 |         |
|       |              |                               |         |


| Chaos | Cluelessness |                               | Summary |
|-------|--------------|-------------------------------|---------|
|       | 000000       | 0<br>00000<br>000000<br>00000 |         |
|       |              |                               |         |

$$V(W_2) - V(W_1) = (5 - 1) + \sum_{k=2}^{N} (Y_k - X_k)$$

| Chaos | Cluelessness |                               | Summary |
|-------|--------------|-------------------------------|---------|
|       | 000000       | 0<br>00000<br>000000<br>00000 |         |
|       |              |                               |         |

$$V(W_2) - V(W_1) = 4 + \sum_{k=2}^{N} Z_k$$

| Chaos | Cluelessness |                               | Summary |
|-------|--------------|-------------------------------|---------|
|       | 0000000      | 0<br>00000<br>000000<br>00000 |         |
|       |              |                               |         |



| Chaos | Cluelessness |                               | Summary |
|-------|--------------|-------------------------------|---------|
|       | 0000000      | 0<br>00000<br>000000<br>00000 |         |
|       |              |                               |         |
|       |              |                               |         |

#### The cluelessness worry (for objective betterness) (Greaves 2016)

For any pair of distinct acts  $(A_1, A_2)$  ever available to us, we can never have even the faintest idea which will have the better outcome.

| Chaos | Cluelessness |                               | Summary |
|-------|--------------|-------------------------------|---------|
|       | 000000       | 0<br>00000<br>000000<br>00000 |         |
|       |              |                               |         |

### Cluelessness - subjective betterness

| Chaos | Cluelessness |                               | Summary |
|-------|--------------|-------------------------------|---------|
|       | 000000       | 0<br>00000<br>000000<br>00000 |         |
|       |              |                               |         |

# Cluelessness - subjective betterness

Total difference:

$$V(W_2) - V(W_1) = 4 + \sum_{k=2}^{N} Z_k$$

| Chaos | Cluelessness |                               | Summary |
|-------|--------------|-------------------------------|---------|
|       | 000000       | 0<br>00000<br>000000<br>00000 |         |
|       |              |                               |         |

### Cluelessness - subjective betterness

Total difference:

$$V(W_2) - V(W_1) = 4 + \sum_{k=2}^{N} Z_k$$

*Expected* total difference:

$$EV(W_2) - EV(W_1) = 4 + EV(\sum_{k=2}^N Z_k)$$
  
= 4 + 0

| Chaos | Infinite worlds               | Summary |
|-------|-------------------------------|---------|
|       | •<br>00000<br>000000<br>00000 |         |
|       |                               |         |
|       |                               |         |

# Infinite worlds

| Chaos       |      | Infinite worlds               | Summary |
|-------------|------|-------------------------------|---------|
|             |      | •<br>00000<br>000000<br>00000 |         |
|             |      |                               |         |
| Infinite wo | rlds |                               |         |

 Several leading cosmological theories predict an infinite future, containing infinitely many instances of every physically possible phenomenon (see Gott 2008; Carroll 2017; Rauer *et al.* 2018).

| Chaos<br>000000000000000 |      | ${ \begin{array}{c} {\rm Infinite\ worlds}\\ \bullet\\ \circ\circ\circ\circ\circ\circ\\\circ\circ\circ\circ\circ\circ\circ\\\circ\circ\circ\circ\circ\circ\circ\\\circ\circ\circ\circ\circ\circ\circ\\\circ\circ\circ\circ\circ\circ\circ$ |  |
|--------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                          |      |                                                                                                                                                                                                                                            |  |
| Infinite wo              | rlds |                                                                                                                                                                                                                                            |  |

- Several leading cosmological theories predict an infinite future, containing infinitely many instances of every physically possible phenomenon (see Gott 2008; Carroll 2017; Rauer *et al.* 2018).
- We have a few ways of comparing infinite worlds.

| Chaos<br>000000000000000 |      | ${ \begin{array}{c} {\rm Infinite\ worlds}\\ \bullet\\ \circ\circ\circ\circ\circ\circ\\\circ\circ\circ\circ\circ\circ\circ\\\circ\circ\circ\circ\circ\circ\circ\\\circ\circ\circ\circ\circ\circ\circ\\\circ\circ\circ\circ\circ\circ\circ$ |  |
|--------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                          |      |                                                                                                                                                                                                                                            |  |
| Infinite wo              | rlds |                                                                                                                                                                                                                                            |  |

- Several leading cosmological theories predict an infinite future, containing infinitely many instances of every physically possible phenomenon (see Gott 2008; Carroll 2017; Rauer *et al.* 2018).
- We have a few ways of comparing infinite worlds.
  - Strongly impartial views

| Chaos<br>000000000000000 |      | ${ \begin{array}{c} {\rm Infinite\ worlds}\\ \bullet\\ \circ\circ\circ\circ\circ\circ\\\circ\circ\circ\circ\circ\circ\circ\\\circ\circ\circ\circ\circ\circ\circ\\\circ\circ\circ\circ\circ\circ\circ\\\circ\circ\circ\circ\circ\circ\circ$ |  |
|--------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                          |      |                                                                                                                                                                                                                                            |  |
| Infinite wo              | rlds |                                                                                                                                                                                                                                            |  |

- Several leading cosmological theories predict an infinite future, containing infinitely many instances of every physically possible phenomenon (see Gott 2008; Carroll 2017; Rauer *et al.* 2018).
- We have a few ways of comparing infinite worlds.
  - Strongly impartial views
  - Weakly impartial views

| Chaos<br>oooooooooooooooo |    |  |  |
|---------------------------|----|--|--|
|                           |    |  |  |
| теч                       | 11 |  |  |

## Infinite worlds

- Several leading cosmological theories predict an infinite future, containing infinitely many instances of every physically possible phenomenon (see Gott 2008; Carroll 2017; Rauer *et al.* 2018).
- We have a few ways of comparing infinite worlds.
  - Strongly impartial views
  - Weakly impartial views
  - Position-dependent views

| Chaos                    | Infinite worlds                | Summary |
|--------------------------|--------------------------------|---------|
|                          | 0<br>• 0000<br>000000<br>00000 |         |
| Strongly impartial views |                                |         |
| Definition               |                                |         |
|                          |                                |         |

• Strong impartiality: Rankings of outcomess are independent of *which* persons obtain value in each outcome, and independent of which times and places those persons are.

| Chaos                   |   | Infinite worlds                | Summary |
|-------------------------|---|--------------------------------|---------|
|                         |   | 0<br>• 0000<br>000000<br>00000 |         |
| Strongly impartial view | s |                                |         |
| Definition              |   |                                |         |
|                         |   |                                |         |

- Strong impartiality: Rankings of outcomess are independent of *which* persons obtain value in each outcome, and independent of which times and places those persons are.
  - Implies that, if  $W_1$  and  $W_2$  contain the same number of persons at each level of value, then  $W_1 \simeq W_2$ .

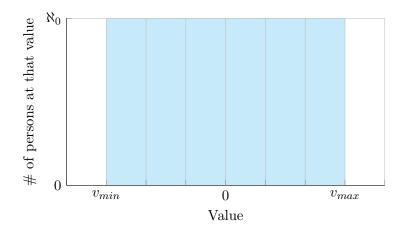
| Chaos                   |   | Infinite worlds                | Summary |
|-------------------------|---|--------------------------------|---------|
|                         |   | 0<br>• 0000<br>000000<br>00000 |         |
| Strongly impartial view | s |                                |         |
| Definition              |   |                                |         |
|                         |   |                                |         |

- Strong impartiality: Rankings of outcomess are independent of *which* persons obtain value in each outcome, and independent of which times and places those persons are.
  - Implies that, if  $W_1$  and  $W_2$  contain the same number of persons at each level of value, then  $W_1 \simeq W_2$ .
- e.g., Bader MS; Clark MS

| Chaos                   |        | Infinite worlds               | Summary |
|-------------------------|--------|-------------------------------|---------|
|                         |        | 0<br>00000<br>000000<br>00000 |         |
| Strongly impartial view | vs     |                               |         |
| Chaotic out             | tcomes |                               |         |

|         | $p_1$ | $p_2$ | $p_3$ | $p_4$ | $p_5$ | $p_6$ | $p_a$ | $p_b$ | ••• | $p_{lpha}$   | $p_{eta}$   | ••• |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|-----|--------------|-------------|-----|
| $W_1$ : | 1     | 0     | 0     | 0     | 0     | 0     | $X_a$ | $X_b$ |     | _            | _           |     |
| $W_2$ : | 0     | 1     | 1     | 1     | 1     | 1     | _     | _     |     | $X_{\alpha}$ | $X_{\beta}$ |     |






Probability density

 $v_{min}$ 

 $v_{max}$ 





| Chaos<br>0000000000000000 |        | Infinite worlds<br>○<br>○○○○○<br>○○○○○<br>○○○○○ |  |
|---------------------------|--------|-------------------------------------------------|--|
| Strongly impartial view   | vs     |                                                 |  |
| Chaotic out               | tcomes |                                                 |  |
|                           |        |                                                 |  |

# 

 $W_1 \simeq W_2$  by any strongly impartial view.

| Chaos                  | Cluelessness | Infinite worlds               | Summary |
|------------------------|--------------|-------------------------------|---------|
|                        |              | 0<br>00000<br>●00000<br>00000 |         |
| Weakly impartial views |              |                               |         |
| Definition             |              |                               |         |
|                        |              |                               |         |

• Weak impartiality: Rankings of outcomes are independent of which persons obtain value across each *outcome pair*, and independent of the times and places those persons are in each outcome.

| Chaos                  | Cluelessness | Infinite worlds                     | Summary |
|------------------------|--------------|-------------------------------------|---------|
|                        |              | 0<br>00000<br><b>00000</b><br>00000 |         |
| Weakly impartial views |              |                                     |         |
| Definition             |              |                                     |         |

- Weak impartiality: Rankings of outcomes are independent of which persons obtain value across each *outcome pair*, and independent of the times and places those persons are in each outcome.
  - Implies that, if the pairs of outcomes  $(W_1, W_2)$  and  $(W_3, W_4)$  contain the same number of persons obtaining values (a, b) in the respective outcomes, then  $W_1 \succeq W_2$  iff  $W_3 \succeq W_4$ .

| Chaos                  | Cluelessness | Infinite worlds                     | Summary |
|------------------------|--------------|-------------------------------------|---------|
|                        |              | 0<br>00000<br><b>00000</b><br>00000 |         |
| Weakly impartial views |              |                                     |         |
| Definition             |              |                                     |         |

- Weak impartiality: Rankings of outcomes are independent of which persons obtain value across each *outcome pair*, and independent of the times and places those persons are in each outcome.
  - Implies that, if the pairs of outcomes  $(W_1, W_2)$  and  $(W_3, W_4)$  contain the same number of persons obtaining values (a, b) in the respective outcomes, then  $W_1 \succeq W_2$  iff  $W_3 \succeq W_4$ .
- e.g., Vallentyne & Kagan 1997: 11; Lauwers & Vallentyne 2004; see also Askell 2018

| Chaos                  | Cluelessness | Infinite worlds              |  |
|------------------------|--------------|------------------------------|--|
|                        |              | 0<br>00000<br>00000<br>00000 |  |
| Weakly impartial views |              |                              |  |
| Pareto                 |              |                              |  |
|                        |              |                              |  |

**Pareto (over persons)**: If outcomes  $W_1$  and  $W_2$  contain the same persons, and every person obtains as much value in  $W_1$  as in  $W_2$ , then  $W_1 \succeq W_2$ . And if some  $p_i$  obtains strictly more value in  $W_1$ , then  $W_1 \succ W_2$ .

| Chaos<br>ooooooooooooooo | Cluelessness<br>0000000 | $\begin{array}{c} \text{Infinite worlds} \\ \circ \\ \circ \circ \circ \circ \circ \circ \\ \circ \circ \circ \circ \circ \circ \circ \\ \circ \circ \circ \circ \circ \circ \circ \end{array}$ |  |
|--------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Weakly impartial views   |                         |                                                                                                                                                                                                 |  |
| Example                  |                         |                                                                                                                                                                                                 |  |
|                          |                         |                                                                                                                                                                                                 |  |

Take the simplified case of  $W_1$  and  $W_2$ , where each  $X_{p_i} \in \{0, 1\}$ :

| Chaos                  | Cluelessness | Infinite worlds               | Summary |
|------------------------|--------------|-------------------------------|---------|
|                        |              | 0<br>00000<br>000000<br>00000 |         |
| Weakly impartial views |              |                               |         |
| Example                |              |                               |         |

We can construct  $W_3$  and  $W_4$  as follows. (n.b.,  $B_1 \cup B_2 = B$ ,  $C_1 \cup C_2 = C$ )

|         | $p_1$ | $p_2$ | A | $B_1$ | $B_2$ | $C_1$ | $C_2$ | D |
|---------|-------|-------|---|-------|-------|-------|-------|---|
| $W_1$ : | 1     | 0     | 1 | _     | _     | 0     | 0     | — |
|         |       | 0     |   |       |       |       |       |   |

| Chaos                  | Infinite worlds               |  |
|------------------------|-------------------------------|--|
|                        | 0<br>00000<br>000000<br>00000 |  |
| Weakly impartial views |                               |  |
| Example                |                               |  |

We can construct  $W_3$  and  $W_4$  as follows. (n.b.,  $B_1 \cup B_2 = B$ ,  $C_1 \cup C_2 = C$ )

|         | $p_1$ | $p_2$ | A | $B_1$ | $B_2$ | $C_1$ | $C_2$ | D |
|---------|-------|-------|---|-------|-------|-------|-------|---|
| $W_1$ : | 1     | 0     | 1 | —     | _     | 0     | 0     | — |
| $W_4$ : | 1     | 0     | 1 | _     | _     | 1     | 0     | _ |
|         |       |       |   |       |       |       |       |   |
| $W_2$ : | 0     | 1     | _ | 1     | 1     | _     | _     | 0 |
| $W_3$ : | 0     | 1     | _ | 0     | 1     | _     | _     | 0 |

| Chaos                  | Cluelessness | Infinite worlds               |  |
|------------------------|--------------|-------------------------------|--|
|                        |              | 0<br>00000<br>000000<br>00000 |  |
| Weakly impartial views |              |                               |  |
| Example                |              |                               |  |

We can construct  $W_3$  and  $W_4$  as follows. (n.b.,  $B_1 \cup B_2 = B$ ,  $C_1 \cup C_2 = C$ )

|         | $p_1$ | $p_2$ | A | $B_1$ | $B_2$ | $C_1$ | $C_2$ | D |
|---------|-------|-------|---|-------|-------|-------|-------|---|
| $W_1$ : | 1     | 0     | 1 | —     | —     | 0     | 0     | — |
| $W_4$ : | 1     | 0     | 1 | _     | _     | 1     | 0     | _ |
|         |       |       |   |       |       |       |       |   |
| $W_2$ : | 0     | 1     | _ | 1     | 1     | _     | _     | 0 |
| $W_3$ : | 0     | 1     | _ | 0     | 1     | _     | _     | 0 |

 $W_4 \succ W_1$  and  $W_2 \succ W_3$  by Pareto

| Chaos                  | Infinite worlds                      | Summary |
|------------------------|--------------------------------------|---------|
|                        | 0<br>00000<br><b>000000</b><br>00000 |         |
| Weakly impartial views |                                      |         |
| Example                |                                      |         |

But the only difference between the pairs  $(W_1, W_2)$  and  $(W_3, W_4)$  is the identities of the persons in each pair.

|         | $p_1$ | $p_2$ | A     | B            | C            | D     |
|---------|-------|-------|-------|--------------|--------------|-------|
| $W_1$ : | 1     | 0     | 1     | —            | 0            | _     |
| $W_2$ : | 0     | 1     | _     | 1            | _            | 0     |
|         |       |       |       |              |              |       |
|         |       |       |       |              |              |       |
|         | $p_2$ | $p_1$ | $B_2$ | $A \cup C_1$ | $B_1 \cup D$ | $C_2$ |
|         |       | · -   | -     | -            | 1            | -     |
| $W_3$ : | 1     |       | 1     |              | 0            | _     |

| Chaos                  | Infinite worlds               | Summary |
|------------------------|-------------------------------|---------|
|                        | 0<br>00000<br>000000<br>00000 |         |
| Weakly impartial views |                               |         |
| Example                |                               |         |

But the only difference between the pairs  $(W_1, W_2)$  and  $(W_3, W_4)$  is the identities of the persons in each pair.

|         | $p_1$ | $p_2$      | A     | B            | C               | D     |
|---------|-------|------------|-------|--------------|-----------------|-------|
| $W_1$ : | 1     | 0          | 1     | _            | 0               | _     |
| $W_2$ : | 0     | 1          | _     | 1            | _               | 0     |
|         |       |            |       |              |                 |       |
|         |       |            |       |              |                 |       |
|         |       |            |       |              |                 |       |
|         | $p_2$ | $p_1$      | $B_2$ | $A \cup C_1$ | $B_1 \cup D$    | $C_2$ |
| $W_3$ : |       | $p_1 \\ 0$ |       | $A \cup C_1$ | $B_1\cup D \ 0$ | $C_2$ |

So weakly impartial views must say  $W_1 \succeq W_2$  iff  $W_3 \succeq W_4$ .

| Chaos                  | Infinite worlds              | Summary |
|------------------------|------------------------------|---------|
|                        | 0<br>00000<br>00000<br>00000 |         |
| Weakly impartial views |                              |         |
| Example                |                              |         |
|                        |                              |         |

So weakly impartial views must say  $W_1 \succeq W_2$  iff  $W_3 \succeq W_4$ .

| Chaos                  | Infinite worlds              | Summary |
|------------------------|------------------------------|---------|
|                        | 0<br>00000<br>00000<br>00000 |         |
| Weakly impartial views |                              |         |
| Example                |                              |         |
|                        |                              |         |

So weakly impartial views must say  $W_1 \geq W_2$  iff  $W_3 \geq W_4$ .

But Pareto says that  $W_4 \succ W_1$  and  $W_2 \succ W_3$ .

| Chaos                  | Cluelessness | Infinite worlds              | Summary |
|------------------------|--------------|------------------------------|---------|
|                        |              | 0<br>00000<br>00000<br>00000 |         |
| Weakly impartial views |              |                              |         |
| Example                |              |                              |         |
|                        |              |                              |         |

So weakly impartial views must say  $W_1 \geq W_2$  iff  $W_3 \geq W_4$ .

But Pareto says that  $W_4 \succ W_1$  and  $W_2 \succ W_3$ .

If  $W_1 \succeq W_2$ , we get a cycle:  $W_1 \succeq W_2 \succ W_3 \succeq W_4 \succ W_1$ . (And, if  $W_2 \succeq W_1$ , we can construct  $W_5, W_6$  for another cycle.)

| Chaos                  | Cluelessness | Infinite worlds              | Summary |
|------------------------|--------------|------------------------------|---------|
|                        |              | 0<br>00000<br>00000<br>00000 |         |
| Weakly impartial views |              |                              |         |
| Example                |              |                              |         |
|                        |              |                              |         |

So weakly impartial views must say  $W_1 \geq W_2$  iff  $W_3 \geq W_4$ .

But Pareto says that  $W_4 \succ W_1$  and  $W_2 \succ W_3$ .

If  $W_1 \succeq W_2$ , we get a cycle:  $W_1 \succeq W_2 \succ W_3 \succeq W_4 \succ W_1$ . (And, if  $W_2 \succeq W_1$ , we can construct  $W_5, W_6$  for another cycle.)

 $\therefore W_1$  and  $W_2$  are incomparable, according to any weakly impartial, Paretian view. (adapted from Askell 2018: ch.3)

| Chaos<br>000000000000000 | Cluelessness<br>0000000 | Infinite worlds          | A solution |  |
|--------------------------|-------------------------|--------------------------|------------|--|
|                          |                         | 00000<br>000000<br>00000 |            |  |
| Position-dependent vie   | ws                      |                          |            |  |

 Position-dependence: Rankings of outcomes are (at least sometimes) dependent on the positions of value in time and space, even when the outcomes contain the same persons and each obtains the same value.

| Chaos                  |    | Infinite worlds               | Summary |
|------------------------|----|-------------------------------|---------|
|                        |    | 0<br>00000<br>000000<br>•0000 |         |
| Position-dependent vie | ws |                               |         |

- Position-dependence: Rankings of outcomes are (at least sometimes) dependent on the positions of value in time and space, even when the outcomes contain the same persons and each obtains the same value.
- e.g., Koopmans 1960; Vallentyne & Kagan 1997:19; Bostrom 2011:16; Jonsson & Voorneveld 2018; Wilkinson MS

| Chaos                   |   | Infinite worlds               | Summary |
|-------------------------|---|-------------------------------|---------|
|                         |   | 0<br>00000<br>000000<br>00000 |         |
| Position-dependent view | 5 |                               |         |
| Overtaking              |   |                               |         |
|                         |   |                               |         |

#### Overtaking criterion (from von Weizsäcker 1965)

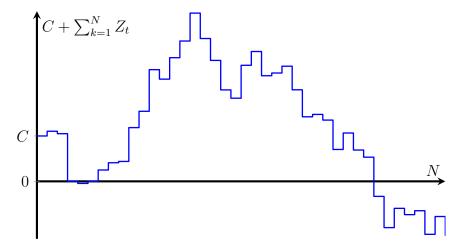
 $W_1 \succcurlyeq W_2$  iff there exists  $T_0 \in \mathbb{N}$  such that, for all  $T > T_0$ ,

$$\sum_{t=1}^{T} v_{W_1}(t) - v_{W_2}(t) \ge 0$$

| Chaos                  | Cluelessness | Infinite worlds               | Summary |
|------------------------|--------------|-------------------------------|---------|
|                        |              | 0<br>00000<br>000000<br>00000 |         |
| Position-dependent vie | ws           |                               |         |

Overtaking for chaotic outcomes

#### Overtaking criterion (from von Weizsäcker 1965)


 $W_1 \succcurlyeq W_2$  iff there exists  $T_0 \in \mathbb{N}$  such that, for all  $T > T_0$ ,

$$C + \sum_{t=1}^{T} Z_t \ge 0$$

| 00000000000000000000000000000000000000 | Chaos | Summary |
|----------------------------------------|-------|---------|
| 00000                                  |       |         |

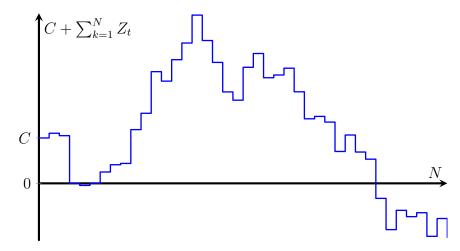
#### Position-dependent views

#### Overtaking for chaotic outcomes

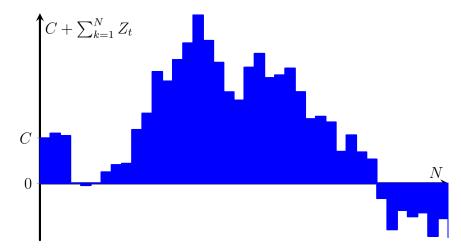


| Chaos                   | Cluelessness | Infinite worlds               | Summary |
|-------------------------|--------------|-------------------------------|---------|
|                         |              | 0<br>00000<br>000000<br>00000 |         |
| Position-dependent view | ws           |                               |         |
| Overtaking              |              |                               |         |
|                         |              |                               |         |

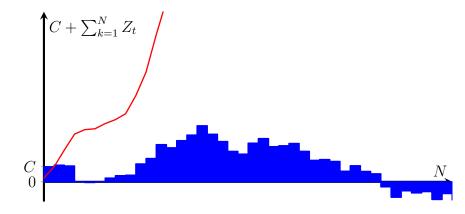
#### Overtaking criterion (from von Weizsäcker 1965)


 $W_1 \succcurlyeq W_2$  iff there exists  $T_0 \in \mathbb{N}$  such that, for all  $T > T_0$ ,

$$\sum_{t=1}^{T} v_{W_1}(t) - v_{W_2}(t) \ge 0$$


| Chao<br>0000 |  | Infinite worlds<br>o<br>ooooo<br>oooooo<br>ooooo | A solution $\bullet$ 000 |  |
|--------------|--|--------------------------------------------------|--------------------------|--|
|              |  |                                                  |                          |  |

| Chaos |                               | A solution | Summary |
|-------|-------------------------------|------------|---------|
|       | 0<br>00000<br>000000<br>00000 | 000        |         |
|       |                               |            |         |






| Chaos | Cluelessness |                               | A solution | Summary |
|-------|--------------|-------------------------------|------------|---------|
|       |              | 0<br>00000<br>000000<br>00000 | 0000       |         |
|       |              |                               |            |         |



| Chaos |                               | A solution | Summary |
|-------|-------------------------------|------------|---------|
|       | 0<br>00000<br>000000<br>00000 | 0000       |         |
|       |                               |            |         |



| Chaos<br>00000000000000 | Infinite worlds<br>0<br>00000<br>000000<br>00000 | A solution $000\Phi$ |  |
|-------------------------|--------------------------------------------------|----------------------|--|
|                         |                                                  |                      |  |
|                         |                                                  |                      |  |

#### Integrated catching-up criterion

 $W_1 \succ W_2$  iff the following integral approaches  $+\infty$ .

$$\int_0^\infty \sum_{t=1}^T v_{W_1}(t) - v_{W_2}(t) dT$$

 $W_1 \simeq W_2$  iff the integral is bounded above and below.

| Chaos<br>000000000000000 | Infinite worlds<br>0<br>00000<br>00000<br>00000<br>00000 | Summary<br>• |
|--------------------------|----------------------------------------------------------|--------------|
| Summary                  |                                                          |              |

■ In a finite chaotic world, we are *clueless* about which acts have the better outcome.

| Chaos   |                               | Summary |
|---------|-------------------------------|---------|
|         | 0<br>00000<br>000000<br>00000 | •       |
|         |                               |         |
| Summary |                               |         |

- In a finite chaotic world, we are *clueless* about which acts have the better outcome.
  - But we can still say which is better *in expectation*, but only because outcomes are comparable.

| Chaos<br>0000000000000000 | Infinite worlds<br>o<br>ococo<br>ococo<br>ococo<br>ococo | Summary<br>● |
|---------------------------|----------------------------------------------------------|--------------|
|                           |                                                          |              |
| Summary                   |                                                          |              |

- In a finite chaotic world, we are *clueless* about which acts have the better outcome.
  - But we can still say which is better *in expectation*, but only because outcomes are comparable.
  - In an infinite chaotic world:

| Chaos<br>000000000000000 | Infinite worlds<br>0<br>00000<br>000000<br>00000 | Summary<br>• |
|--------------------------|--------------------------------------------------|--------------|
|                          |                                                  |              |
| a                        |                                                  |              |

- In a finite chaotic world, we are *clueless* about which acts have the better outcome.
  - But we can still say which is better *in expectation*, but only because outcomes are comparable.
- In an infinite chaotic world:
  - All strongly impartial views say that all (possible) acts have equally good outcomes.

| Chaos<br>000000000000000 | Infinite worlds<br>0<br>00000<br>000000<br>00000 | Summary<br>• |
|--------------------------|--------------------------------------------------|--------------|
|                          |                                                  |              |
| ~                        |                                                  |              |

- In a finite chaotic world, we are *clueless* about which acts have the better outcome.
  - But we can still say which is better *in expectation*, but only because outcomes are comparable.
- In an infinite chaotic world:
  - All strongly impartial views say that all (possible) acts have equally good outcomes.
  - All weakly impartial (Paretian) views say that all acts have *incomparable* outcomes.

| Chaos<br>ococococococo | Infinite worlds<br>o<br>oocoo<br>ooocoo<br>oocoo | $\operatorname{Summary}_{ullet}$ |
|------------------------|--------------------------------------------------|----------------------------------|
|                        |                                                  |                                  |
| ~                      |                                                  |                                  |

- In a finite chaotic world, we are *clueless* about which acts have the better outcome.
  - But we can still say which is better *in expectation*, but only because outcomes are comparable.
- In an infinite chaotic world:
  - All strongly impartial views say that all (possible) acts have equally good outcomes.
  - All weakly impartial (Paretian) views say that all acts have *incomparable* outcomes.
  - *Many* position-dependent views say that all acts have *incomparable* outcomes.

| Chaos<br>oococococococo | Infinite worlds<br>o<br>ococo<br>ococo<br>ococo | $\operatorname{Summary}_{ullet}$ |
|-------------------------|-------------------------------------------------|----------------------------------|
|                         |                                                 |                                  |
|                         |                                                 |                                  |

- In a finite chaotic world, we are *clueless* about which acts have the better outcome.
  - But we can still say which is better *in expectation*, but only because outcomes are comparable.
- In an infinite chaotic world:
  - All strongly impartial views say that all (possible) acts have equally good outcomes.
  - All weakly impartial (Paretian) views say that all acts have *incomparable* outcomes.
  - *Many* position-dependent views say that all acts have *incomparable* outcomes.
- To say that any available act has a better outcome than another, we must accept position-dependence (or something even less plausible).